Basic principles

Question Paper

Level	Pre U
Subject	Chemistry
Exam Board	Cambridge International Examinations
Topic	Basic principles- Preliminaries
Booklet	Question Paper

Time Allowed: 26 minutes

Score: /22

Percentage: /100

Grade Boundaries:

Save My Exams! – The Home of RevisionFor more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

Mn	[Ar]									
Fe ²⁺	[Ar]									
32 30 28 26	200 200 300 400 400 200	of the firs	st and s	econd id	onisation	energ	ies acros		nisation-	hown.
ionisation ener 10 10 8 6	300 300 400 300 300 300 400	***	*	* *	**	*		1 st ic	onisation	
2	200								97	
(i)	K Ca				Period 4	4 elem	ents		As Se	Br Kr
(ii)	Explain v	vhy the f	irst ionis							atively co

Save My Exams! – The Home of RevisionFor more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

(iv)	Explain why the increase between first and second ionisation energies for both Cr and Cu is bigger than for the rest of the transition elements shown.
		[3]
(c)		of the key characteristics of transition elements is their ability to exhibit a range of rent oxidation states.
	(i)	Describe and explain the pattern of maximum oxidation states for the elements from Sc to Zn.
		[3]
((ii)	Suggest the formula and charge of the ferrate(VI) oxy-anion.
		[1]

Save My Exams! – The Home of RevisionFor more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

(d)

	ed Werner was awarded the Nobel Prize in 1913 for his work on complexes of cobalt with monia.
The	e compounds with the formula $Co(NH_3)_6Cl_3$ exist in four isomeric forms, W , X , Y and Z .
	reacts with an aqueous solution of silver nitrate in a 1:3 mole ratio, forming a white cipitate.
	eacts with an aqueous solution of silver nitrate in a 1:2 mole ratio, forming a white cipitate.
	nd ${f Z}$ both react with aqueous silver nitrate in a 1:1 mole ratio, forming white precipitates in h cases.
(i)	Explain the conclusion that can be drawn from the different mole ratios of reaction with aqueous silver nitrate.
	[1]
(ii)	Give the formulae of the complex ions present in each of W and X .
	W [2]
(iii)	Name the type of isomerism shown by W and X .
	[1]
(iv)	Name the type of isomerism shown by Y and Z .
	[1]

(v) Draw three-dimensional diagrams of the structures of the complexes present in Y and Z.